理解 Python 字节码,理解python字节码,未经许可,禁止转载!英文


本文由 编橙之家 - Sheng Gordon 翻译,黄利民 校稿。未经许可,禁止转载!
英文出处:security.coverity.com。欢迎加入翻译组。

我最近在参与Python字节码相关的工作,想与大家分享一些这方面的经验。更准确的说,我正在参与2.6到2.7版本的CPython解释器字节码的工作。

Python是一门动态语言,在命令行工具下运行时,本质上执行了下面的步骤:

  • 当第一次执行到一段代码时,这段代码会被编译(如,作为一个模块加载,或者直接执行)。根据操作系统的不同,这一步生成后缀名是pyc或者pyo的二进制文件。
  • 解释器读取二进制文件,并依次执行指令(opcodes)。

Python解释器是基于栈的。要理解数据流向,我们需要知道每条指令的栈效应(如,操作码和参数)。

探索Python二进制文件

得到一个二进制文件字节码的最简单方式,是对CodeType结构进行解码:

Python
; html-script: false ]import marshal
fd = open('path/to/my.pyc', 'rb')
magic = fd.read(4) # 魔术数,与python版本相关
date = fd.read(4) # 编译日期
code_object = marshal.load(fd)
fd.close()

code_object包含了一个CodeType对象,它代表被加载文件的整个模块。为了查看这个模块的类定义、方法等的所有嵌套编码对象(编码对象,原文为code object),我们需要递归地检查CodeType的常量池。就像下面的代码:

Python
; html-script: false ]import types

def inspect_code_object(co_obj, indent=''):
print indent, "%s(lineno:%d)" % (co_obj.co_name, co_obj.co_firstlineno)
for c in co_obj.co_consts:
if isinstance(c, types.CodeType):
inspect_code_object(c, indent + ' ')

inspect_code_object(code_object) # 从第一个对象开始

这个案例中,我们打印出一颗编码对象树,每个编码对象是其父对象的子节点。对下面的代码:

Python
; html-script: false ]class A:
def __init__(self):
pass
def __repr__(self):
return 'A()'
a = A()
print a

我们得到的树形结果是:

Python
<module>(lineno:2)
   A(lineno:2)
     __init__(lineno:3)
     __repr__(lineno:5)

为了测试,我们可以通过compile指令,编译一个包含Python源码的字符串,从而能够得到一个编码对象:

Python
co_obj = compile(python_source_code, '<string>', 'exec')

要获取更多关于编码对象的信息,我们可以查阅Python文档的co_* fields 部分。

初见字节码

一旦我们得到了编码对象,我们就可以开始对它进行拆解了(在co_code字段)。从字节码中解析出它的含义:
• 解释操作码的含义
• 提取任意参数

dis模块的disassemble函数展示了是如何做到的。对我们前面例子,它输出的结果是:

Python
2   0 LOAD_CONST        0 ('A')
    3 LOAD_CONST        3 (())
    6 LOAD_CONST        1 (<code object A at 0x42424242, file "<string>", line 2>)
    9 MAKE_FUNCTION     0
   12 CALL_FUNCTION     0
   15 BUILD_CLASS
   16 STORE_NAME        0 (A)

8  19 LOAD_NAME         0 (A)
   22 CALL_FUNCTION     0
   25 STORE_NAME        1 (a)

9  28 LOAD_NAME         1 (a)
   31 PRINT_ITEM
   32 PRINT_NEWLINE
   33 LOAD_CONST        2 (None)
   36 RETURN_VALUE

我们得到了:

  • 行号(当它改变时)
  • 指令的序号
  • 当前指令的操作码
  • 操作参数(oparg),操作码用它来计算实际的参数。例如,对于LOAD_NAME操作码,操作参数指向tuple co_names的索引。
  • 计算后的实际参数(圆括号内)

对于序号为6的指令,操作码LOAD_CONST的操作参数,指向需要从tuple co_consts加载的对象。这里,它指向A的类型定义。同样的,我们能够继续并反编译所有的代码对象,得到模块的全部字节码。

字节码的第一部分(序号0到16),与A的类型定义有关;其他的部分是我们实例化A,并打印它的代码。

有趣的字节码构造

所有的操作码都是相当直接易懂的,但是由于下面的原因,在个别情况下会显得奇怪:

  • 编译器优化
  • 解释器优化(因此会导致加入额外的操作码)

顺序变量赋值

首先,我们看看顺序地对多个元素赋值,会发生什么:

Python
; html-script: false ](1) a, b = 1, '2'
(2) a, b = 1, e
(3) a, b, c = 1, 2, e
(4) a, b, c, d = 1, 2, 3, e

这4中语句,会产生差别相当大的字节码。

第一种情况最简单,因为赋值操作的右值(RHS)只包含常量。这种情况下,CPython会创建一个(1, ‘a’) 的t uple,使用UNPACK_SEQUENCE操作码,把两个元素压到栈上,并对变量a和b分别执行STORE_FAST操作:

Python
; html-script: false ]0 LOAD_CONST 5 ((1, '2'))
3 UNPACK_SEQUENCE 2
6 STORE_FAST 0 (a)
9 STORE_FAST 1 (b)

而第二种情况,则在右值引入了一个变量,因此一般情况下,会调用一条取值指令(这里简单地调用了LOAD_GLOBAL指令)。但是,编译器不需要在栈上为这些值创建一个新的tuple,也不需要调用UNPACK_SEQUENCE(序号18);调用ROT_TWO就足够了,它用来交换栈顶的两个元素(虽然交换指令19和22也可以达到目的)。

Python
; html-script: false ]12 LOAD_CONST 1 (1)
15 LOAD_GLOBAL 0 (e)
18 ROT_TWO
19 STORE_FAST 0 (a)
22 STORE_FAST 1 (b)

第三种情况变得很奇怪。把表达式放到栈上与前一种情况的处理方式相同,但是在交换栈顶的3个元素后,它再次交换了栈顶的2个元素:

Python
; html-script: false ]25 LOAD_CONST 1 (1)
28 LOAD_CONST 3 (2)
31 LOAD_GLOBAL 0 (e)
34 ROT_THREE
35 ROT_TWO
36 STORE_FAST 0 (a)
39 STORE_FAST 1 (b)
42 STORE_FAST 2 (c)

最后一种情况是通用的处理方式,ROT_*操作看起来行不通了,编译器创建了一个tuple,然后调用UNPACK_SEQUENCE把元素放到栈上:

Python
; html-script: false ]45 LOAD_CONST 1 (1)
48 LOAD_CONST 3 (2)
51 LOAD_CONST 4 (3)
54 LOAD_GLOBAL 0 (e)
57 BUILD_TUPLE 4
60 UNPACK_SEQUENCE 4
63 STORE_FAST 0 (a)
66 STORE_FAST 1 (b)
69 STORE_FAST 2 (c)
72 STORE_FAST 3 (d)

函数调用构造

最后一组有趣的例子是关于函数调用构造,以及创建调用的4个操作码。我猜测这些操作码的数量是为了优化解释器代码,因为它不像Java,有invokedynamicinvokeinterfaceinvokespecialinvokestatic或者invokevirtual之一。

Java中,invokeinterfaceinvokespecialinvokevirtual都是从静态类型语言中借鉴来的(invokespecial只被用来调用构造函数和父类AFAIK)。Invokestatic是自我描述的(不需要把接收方放在栈上),在Python中没有类似的概念(在解释器层面上,而不是装饰者)。简短的说,Python调用都能被转换成invokedynamic

在Python中,不同的CALL_*操作码确实不存在,原因是类型系统,静态方法,或者特殊访问构造器的需求。它们都指向了Python中一个函数调用是如何确定的。从语法来看:

调用结构允许代码这些写:

Python
func(arg1, arg2, keyword=SOME_VALUE, *unpack_list, **unpack_dict)

关键字参数允许通过形式参数的名称来传递参数,而不仅仅是通过位置。*符号从一个可迭代的容器中取出所有元素,作为参数传入(逐个元素,不是以tuple的形式),而**符号处理一个包含关键字和值的字典。

这个例子用到了调用构造的几乎所有特性:
• 传递变量参数列表(_VAR):CALL_FUNCTION_VAR, CALL_FUNCTION_VAR_KW
• 传递基于字典的关键字(_KW):CALL_FUNCTION_KW, CALL_FUNCTION_VAR_KW

字节码是这样的:

Python
; html-script: false ]0 LOAD_NAME 0 (func)
3 LOAD_NAME 1 (arg1)
6 LOAD_NAME 2 (arg2)
9 LOAD_CONST 0 ('keyword')
12 LOAD_NAME 3 (SOME_VALUE)
15 LOAD_NAME 4 (unpack_list)
18 LOAD_NAME 5 (unpack_dict)
21 CALL_FUNCTION_VAR_KW 258

通常,CALL_FUNCTION调用将oparg解析为参数个数。但是,更多的信息被编码。第一个字节(0xff掩码)存储参数的个数,第二个字节((value >> 8) & 0xff)存储传递的关键字参数个数。为了要计算需要从栈顶弹出的元素个数,我们需要这么做:

Python
na = arg & 0xff # num args
nk = (arg >> 8) & 0xff # num keywords
n_to_pop = na + 2 * nk + CALL_EXTRA_ARG_OFFSET[op]

CALL_EXTRA_ARG_OFFSET包含了一个偏移量,由调用操作码确定(对CALL_FUNCTION_VAR_KW来说,是2)。这里,在访问函数名称前,我们需要弹出6个元素。

对于其他的CALL_*调用,完全依赖于代码是否使用列表或者字典传递参数。只需要简单的组合即可。

构造一个极小的CFG

为了理解代码是如何运行的,我们可以构造一个控制流程图(control-flow graph,CFG),这个过程非常有趣。我们通过它,查看在什么条件下,哪些无条件判断的操作码(基本单元)序列会被执行。

即使字节码是一门真正的小型语言,构造一个运行稳定的CFG需要大量的细节工作,远超出本博客的范围。因此如果需要一个真实的CFG实现,你可以看看这里equip。

在这里,我们只关注没有循环和异常的代码,因此控制流程只依赖与if语句。

只有少数几个操作码能够执行地址跳转(对没有循环和异常的情况);它们是:

  • JUMP_FORWARD:在字节码中跳转到一个相对位置。参数是跳过的字节数。
  • JUMP_IF_FALSE_OR_POPJUMP_IF_TRUE_OR_POPJUMP_ABSOLUTEPOP_JUMP_IF_FALSE,以及POP_JUMP_IF_TRUE:参数都是字节码中的绝对地址。

为一个函数够造CFG,意味着要创建基本的单元(不包含条件判断的操作码序列——除非有异常发生),并且把它们与条件和分支连在一起,构成一个图。在我们的例子中,我们只有True、False和无条件分支。

让我们来考虑下面的代码示例(在实际中绝对不要这样用):

Python
; html-script: false ]def factorial(n):
if n &lt;= 1:
return 1
elif n == 2:
return 2
return n * factorial(n - 1)

如前所述,我们得到factorial方法的代码对象:

Python
module_co = compile(python_source, &#039;&#039;, &#039;exec&#039;)
meth_co = module_co.co_consts[0]

反汇编结果是这样的(<<<后是我的注释):

Python
3           0 LOAD_FAST                0 (n)
            3 LOAD_CONST               1 (1)
            6 COMPARE_OP               1 (&lt;=)
            9 POP_JUMP_IF_FALSE       16              &lt;&lt;&lt; control flow

4          12 LOAD_CONST               1 (1)
           15 RETURN_VALUE                            &lt;&lt;&lt; control flow

5     &gt;&gt;   16 LOAD_FAST                0 (n)
           19 LOAD_CONST               2 (2)
           22 COMPARE_OP               2 (==)
           25 POP_JUMP_IF_FALSE       32              &lt;&lt;&lt; control flow

6          28 LOAD_CONST               2 (2)
           31 RETURN_VALUE                            &lt;&lt;&lt; control flow

7     &gt;&gt;   32 LOAD_FAST                0 (n)
           35 LOAD_GLOBAL              0 (factorial)
           38 LOAD_FAST                0 (n)
           41 LOAD_CONST               1 (1)
           44 BINARY_SUBTRACT
           45 CALL_FUNCTION            1
           48 BINARY_MULTIPLY
           49 RETURN_VALUE                            &lt;&lt;&lt; control flow

在这个字节码中,我们有5条改变CFG结构的指令(添加约束条件,或者允许快速退出):

  • POP_JUMP_IF_FALSE:跳转到绝对地址16和32;
  • RETURN_VALUE:从栈顶弹出一个元素,并返回。

提取基本单元很简单,因为我们只关心那些改变控制流程的指令。在我们的例子中,我们没有遇到强制跳转指令,如JUMP_FORWARDJUMP_ABSOLUTE

提取这类结构的代码示例:

Python
; html-script: false ]import opcode
RETURN_VALUE = 83
JUMP_FORWARD, JUMP_ABSOLUTE = 110, 113
FALSE_BRANCH_JUMPS = (111, 114) # JUMP_IF_FALSE_OR_POP, POP_JUMP_IF_FALSE

def find_blocks(meth_co):
  blocks = {}
  code = meth_co.co_code
  finger_start_block = 0
  i, length = 0, len(code)
  while i < length:
    op = ord(code[i])
    i += 1
    if op == RETURN_VALUE: # We force finishing the block after the return,
                           # dead code might still exist after though...
      blocks[finger_start_block] = {
        'length': i - finger_start_block - 1,
        'exit': True
      }
      finger_start_block = i
    elif op >= opcode.HAVE_ARGUMENT:
      oparg = ord(code[i]) + (ord(code[i+1]) << 8)
      i += 2
      if op in opcode.hasjabs: # Absolute jump to oparg
        blocks[finger_start_block] = {
          'length': i - finger_start_block
        }
        if op == JUMP_ABSOLUTE: # Only uncond absolute jump
          blocks[finger_start_block]['conditions'] = {
            'uncond': oparg
          }
        else:
          false_index, true_index = (oparg, i) if op in FALSE_BRANCH_JUMPS else (i, oparg)
          blocks[finger_start_block]['conditions'] = {
            'true': true_index,
            'false': false_index
          }
        finger_start_block = i
      elif op in opcode.hasjrel:
        # Essentially do the same...
        pass

  return blocks

我们得到了下面的基本单元:

Python
Block  0: {&#039;length&#039;: 12, &#039;conditions&#039;: {&#039;false&#039;: 16, &#039;true&#039;: 12}}
Block 12: {&#039;length&#039;: 3, &#039;exit&#039;: True}
Block 16: {&#039;length&#039;: 12, &#039;conditions&#039;: {&#039;false&#039;: 32, &#039;true&#039;: 28}}
Block 28: {&#039;length&#039;: 3, &#039;exit&#039;: True}
Block 32: {&#039;length&#039;: 17, &#039;exit&#039;: True}

以及单元的当前结构:

Python
Basic blocks
  start_block_index :=
     length     := size of instructions
     condition  := true | false | uncond -> target_index
     exit*      := true

我们得到了控制流程图(除了入口和隐式的退出单元),之后我们可以把它转化成可视化的图形:

Python
; html-script: false ]def to_dot(blocks):
cache = {}

def get_node_id(idx, buf):
if idx not in cache:
cache[idx] = 'node_%d' % idx
buf.append('%s [label="Block Index %d"];' % (cache[idx], idx))
return cache[idx]

buffer = ['digraph CFG {']
buffer.append('entry [label="CFG Entry"]; ')
buffer.append('exit [label="CFG Implicit Return"]; ')

for block_idx in blocks:
node_id = get_node_id(block_idx, buffer)
if block_idx == 0:
buffer.append('entry -&gt; %s;' % node_id)
if 'conditions' in blocks[block_idx]:
for cond_kind in blocks[block_idx]['conditions']:
target_id = get_node_id(blocks[block_idx]['conditions'][cond_kind], buffer)
buffer.append('%s -&gt; %s [label="%s"];' % (node_id, target_id, cond_kind))
if 'exit' in blocks[block_idx]:
buffer.append('%s -&gt; exit;' % node_id)

buffer.append('}')
return 'n'.join(buffer)

可视化的流程控制图:

为什么有这篇文章?

需要访问Python字节码的情况确实很少见,但是我已经遇到过几次这种情形了。我希望,这篇文章能够帮助那些开始研究Python逆向工程的人们。

然而现在,我正在研究Python代码,尤其是它的字节码。由于目前在Python中尚不存在这样的工具(并且检测源代码通常会留下非常低效的装饰器检测代码),这就是为什么equip会出现的原因。

评论关闭