Python数据结构——AVL树的基本概念,,我们知道,当树变得不平衡


平衡二叉搜索树

在上一节中我们讨论了建立一个二叉搜索树。我们知道,当树变得不平衡时getput操作会使二叉搜索树的性能降低到O(n)。在这一节中我们将看到一种特殊的二叉搜索树,它可以自动进行调整,以确保树随时都保持平衡。这种树被称为AVL树,命名源于其发明者:G.M. Adelson-Velskii 和 E.M. Landis。

AVL树实现抽象数据类型Map就像一个普通的二叉搜索树,唯一不同的是这棵树的工作方式。为实现我们的AVL树我们需要在树中的每个节点加入一个平衡因子并跟踪其变化情况。我们通过比较每个节点的左右子树的高度完成比较。更正式地讲,我们定义一个节点的平衡因子为左子树和右子树的高度之差。

balanceFactor = height(leftSubTree)  height(rightSubTree)

利用以上对平衡因子的定义,如果平衡因子大于零,我们称子树“左重”(left-heavy)。如果平衡因子小于零,那么子树“右重”(right-heavy)。如果平衡因子为零,则树是完全平衡的。为实现AVL树,目的是得到一棵平衡的树,我们定义平衡因子如果是 -1,0 或 1,那么这棵树是平衡的。一旦树中节点的平衡因子超出了这个范围,我们需要有一个把树恢复平衡的过程。图 1 是一个不平衡的“右重”树的例子,其中每个节点都标注了平衡因子。

图 1:一棵标注了平衡因子的不平衡的右重树

AVL树性能

在我们继续进行之前让我们看看引入这个新的平衡因子的结果。我们的要求是,确保树上的平衡因子始终为 -1,0 或 1。我们可以通过对键的操作得到更好的时间复杂度。首先,我们要思考如何利用这个平衡条件去改变最坏情况下的树。有两种可能性需要考虑,左重树和右重树。如果我们考虑树的高度为 0,1,2 和 3,图 2 举出了在新规则下可能出现的最不平衡的左重树的例子。

图 2:最坏情况下的左重AVL

让我们看看树上的节点的总数。我们看到一棵高度为 0 的树有 1 个节点,一个高度为 1 的树有 1 + 1 = 2 个节点,一个高度为 2 的树有 1 + 1 + 2 = 4 个节点,一棵高度为 3 的树有 1 + 2 + 4 = 7 个节点。概括起来,高度为h的树的节点数(Nh)为:

N_h = 1 + N_{h-1} + N_{h-2}

可能你很熟悉这个公式,因为它和斐波那契序列非常相似。我们可以利用这个公式通过树中的节点的数目推导出一个AVL树的高度。在我们的印象中,斐波那契数列与斐波那契数的关系为:

 

QQ图片20160621101915 QQ图片20160621101952QQ图片20160621101952

这个推导过程告诉我们,在任何时候我们的AVL树的高度等于树中节点数以 2 为底的对数的常数(1.44)倍。这对我们搜索AVL树来说是好消息因为它限制了搜索的复杂度到 O(logN)。

相关内容

    暂无相关文章

评论关闭