python实现网页登录时的rsa加密流程,pythonrsa加密流程,对某些网站的登录包进


对某些网站的登录包进行抓包时发现,客户端对用户名进行了加密,然后传给服务器进行校验。

使用chrome调试功能断点调试,发现网站用javascript对用户名做了rsa加密。

为了实现网站的自动登录,需要模拟这个加密过程。

网上搜了下关于rsa加密的最简明的解释:

rsa加密是非对称加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥。公钥是可发布的供任何人使用,私钥则为自己所有,供解密之用。

断点调试:

技术分享

经过分析,登录网站使用公钥对用户名进行加密,公钥值在登录页面响应报文中可以找到,一般为exponent和modulus。

其中exponent为指数,一般为65537,十六进制为010001。

modulus为加密算法中用到的n值,即大数乘积,一般rsa加密算法的介绍文章中都是:(N,e)为公钥,(N,d)为私钥

js代码中有详细的实现过程,比较复杂,如果看懂了再用python来实现,代价太高。

我尝试了三种解决方式:

1、将js代码扣出来,借用浏览器来执行

即使用python的webserver功能,在浏览器上实现js的计算,并将结果返回给客户端

使用python2.7 的BaseHTTPServer模块实现一个模拟加密的过程

server端代码:

#!/usr/bin/env python# coding:utf-8from BaseHTTPServer import HTTPServer,BaseHTTPRequestHandlerimport io,shutil,urllib import urlparse class RequestHandler(BaseHTTPRequestHandler):    #def do_Head(self):        #self._writeheaders()    def _writeheaders(self):        self.send_response(200)        self.send_header(‘Content-type‘, ‘text/html‘)        self.end_headers()    def do_GET(self):          parsed_path = urlparse.urlparse(self.path);        self._writeheaders()        self.wfile.write("""<!doctype html><html class="no-js" lang=""><head>    <meta charset="utf-8">    <title>RSATEST</title>    <script>         /*         * RSA, a suite of routines for performing RSA public-key computations in JavaScript.         * Copyright 1998-2005 David Shapiro.         * Dave Shapiro         * [email protected]          * changed by Fuchun, 2010-05-06         * [email protected]         */        (function($w) {               if(typeof $w.RSAUtils === ‘undefined‘)            var RSAUtils = $w.RSAUtils = {};                var biRadixBase = 2;        var biRadixBits = 16;        var bitsPerDigit = biRadixBits;        var biRadix = 1 << 16; // = 2^16 = 65536        var biHalfRadix = biRadix >>> 1;        var biRadixSquared = biRadix * biRadix;        var maxDigitVal = biRadix - 1;        var maxInteger = 9999999999999998;                //maxDigits:        //Change this to accommodate your largest number size. Use setMaxDigits()        //to change it!        //        //In general, if you‘re working with numbers of size N bits, you‘ll need 2*N        //bits of storage. Each digit holds 16 bits. So, a 1024-bit key will need        //        //1024 * 2 / 16 = 128 digits of storage.        //        var maxDigits;        var ZERO_ARRAY;        var bigZero, bigOne;                var BigInt = $w.BigInt = function(flag) {            if (typeof flag == "boolean" && flag == true) {                this.digits = null;            } else {                this.digits = ZERO_ARRAY.slice(0);            }            this.isNeg = false;        };                RSAUtils.setMaxDigits = function(value) {            maxDigits = value;            ZERO_ARRAY = new Array(maxDigits);            for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;            bigZero = new BigInt();            bigOne = new BigInt();            bigOne.digits[0] = 1;        };        RSAUtils.setMaxDigits(20);                //The maximum number of digits in base 10 you can convert to an        //integer without JavaScript throwing up on you.        var dpl10 = 15;                RSAUtils.biFromNumber = function(i) {            var result = new BigInt();            result.isNeg = i < 0;            i = Math.abs(i);            var j = 0;            while (i > 0) {                result.digits[j++] = i & maxDigitVal;                i = Math.floor(i / biRadix);            }            return result;        };                //lr10 = 10 ^ dpl10        var lr10 = RSAUtils.biFromNumber(1000000000000000);                RSAUtils.biFromDecimal = function(s) {            var isNeg = s.charAt(0) == ‘-‘;            var i = isNeg ? 1 : 0;            var result;            // Skip leading zeros.            while (i < s.length && s.charAt(i) == ‘0‘) ++i;            if (i == s.length) {                result = new BigInt();            }            else {                var digitCount = s.length - i;                var fgl = digitCount % dpl10;                if (fgl == 0) fgl = dpl10;                result = RSAUtils.biFromNumber(Number(s.substr(i, fgl)));                i += fgl;                while (i < s.length) {                    result = RSAUtils.biAdd(RSAUtils.biMultiply(result, lr10),                            RSAUtils.biFromNumber(Number(s.substr(i, dpl10))));                    i += dpl10;                }                result.isNeg = isNeg;            }            return result;        };                RSAUtils.biCopy = function(bi) {            var result = new BigInt(true);            result.digits = bi.digits.slice(0);            result.isNeg = bi.isNeg;            return result;        };                RSAUtils.reverseStr = function(s) {            var result = "";            for (var i = s.length - 1; i > -1; --i) {                result += s.charAt(i);            }            return result;        };                var hexatrigesimalToChar = [            ‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘,            ‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘, ‘g‘, ‘h‘, ‘i‘, ‘j‘,            ‘k‘, ‘l‘, ‘m‘, ‘n‘, ‘o‘, ‘p‘, ‘q‘, ‘r‘, ‘s‘, ‘t‘,            ‘u‘, ‘v‘, ‘w‘, ‘x‘, ‘y‘, ‘z‘        ];                RSAUtils.biToString = function(x, radix) { // 2 <= radix <= 36            var b = new BigInt();            b.digits[0] = radix;            var qr = RSAUtils.biDivideModulo(x, b);            var result = hexatrigesimalToChar[qr[1].digits[0]];            while (RSAUtils.biCompare(qr[0], bigZero) == 1) {                qr = RSAUtils.biDivideModulo(qr[0], b);                digit = qr[1].digits[0];                result += hexatrigesimalToChar[qr[1].digits[0]];            }            return (x.isNeg ? "-" : "") + RSAUtils.reverseStr(result);        };                RSAUtils.biToDecimal = function(x) {            var b = new BigInt();            b.digits[0] = 10;            var qr = RSAUtils.biDivideModulo(x, b);            var result = String(qr[1].digits[0]);            while (RSAUtils.biCompare(qr[0], bigZero) == 1) {                qr = RSAUtils.biDivideModulo(qr[0], b);                result += String(qr[1].digits[0]);            }            return (x.isNeg ? "-" : "") + RSAUtils.reverseStr(result);        };                var hexToChar = [‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘,                ‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘];                RSAUtils.digitToHex = function(n) {            var mask = 0xf;            var result = "";            for (i = 0; i < 4; ++i) {                result += hexToChar[n & mask];                n >>>= 4;            }            return RSAUtils.reverseStr(result);        };                RSAUtils.biToHex = function(x) {            var result = "";            var n = RSAUtils.biHighIndex(x);            for (var i = RSAUtils.biHighIndex(x); i > -1; --i) {                result += RSAUtils.digitToHex(x.digits[i]);            }            return result;        };                RSAUtils.charToHex = function(c) {            var ZERO = 48;            var NINE = ZERO + 9;            var littleA = 97;            var littleZ = littleA + 25;            var bigA = 65;            var bigZ = 65 + 25;            var result;                    if (c >= ZERO && c <= NINE) {                result = c - ZERO;            } else if (c >= bigA && c <= bigZ) {                result = 10 + c - bigA;            } else if (c >= littleA && c <= littleZ) {                result = 10 + c - littleA;            } else {                result = 0;            }            return result;        };                RSAUtils.hexToDigit = function(s) {            var result = 0;            var sl = Math.min(s.length, 4);            for (var i = 0; i < sl; ++i) {                result <<= 4;                result |= RSAUtils.charToHex(s.charCodeAt(i));            }            return result;        };                RSAUtils.biFromHex = function(s) {            var result = new BigInt();            var sl = s.length;            for (var i = sl, j = 0; i > 0; i -= 4, ++j) {                result.digits[j] = RSAUtils.hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));            }            return result;        };                RSAUtils.biFromString = function(s, radix) {            var isNeg = s.charAt(0) == ‘-‘;            var istop = isNeg ? 1 : 0;            var result = new BigInt();            var place = new BigInt();            place.digits[0] = 1; // radix^0            for (var i = s.length - 1; i >= istop; i--) {                var c = s.charCodeAt(i);                var digit = RSAUtils.charToHex(c);                var biDigit = RSAUtils.biMultiplyDigit(place, digit);                result = RSAUtils.biAdd(result, biDigit);                place = RSAUtils.biMultiplyDigit(place, radix);            }            result.isNeg = isNeg;            return result;        };                RSAUtils.biDump = function(b) {            return (b.isNeg ? "-" : "") + b.digits.join(" ");        };                RSAUtils.biAdd = function(x, y) {            var result;                    if (x.isNeg != y.isNeg) {                y.isNeg = !y.isNeg;                result = RSAUtils.biSubtract(x, y);                y.isNeg = !y.isNeg;            }            else {                result = new BigInt();                var c = 0;                var n;                for (var i = 0; i < x.digits.length; ++i) {                    n = x.digits[i] + y.digits[i] + c;                    result.digits[i] = n % biRadix;                    c = Number(n >= biRadix);                }                result.isNeg = x.isNeg;            }            return result;        };                RSAUtils.biSubtract = function(x, y) {            var result;            if (x.isNeg != y.isNeg) {                y.isNeg = !y.isNeg;                result = RSAUtils.biAdd(x, y);                y.isNeg = !y.isNeg;            } else {                result = new BigInt();                var n, c;                c = 0;                for (var i = 0; i < x.digits.length; ++i) {                    n = x.digits[i] - y.digits[i] + c;                    result.digits[i] = n % biRadix;                    // Stupid non-conforming modulus operation.                    if (result.digits[i] < 0) result.digits[i] += biRadix;                    c = 0 - Number(n < 0);                }                // Fix up the negative sign, if any.                if (c == -1) {                    c = 0;                    for (var i = 0; i < x.digits.length; ++i) {                        n = 0 - result.digits[i] + c;                        result.digits[i] = n % biRadix;                        // Stupid non-conforming modulus operation.                        if (result.digits[i] < 0) result.digits[i] += biRadix;                        c = 0 - Number(n < 0);                    }                    // Result is opposite sign of arguments.                    result.isNeg = !x.isNeg;                } else {                    // Result is same sign.                    result.isNeg = x.isNeg;                }            }            return result;        };                RSAUtils.biHighIndex = function(x) {            var result = x.digits.length - 1;            while (result > 0 && x.digits[result] == 0) --result;            return result;        };                RSAUtils.biNumBits = function(x) {            var n = RSAUtils.biHighIndex(x);            var d = x.digits[n];            var m = (n + 1) * bitsPerDigit;            var result;            for (result = m; result > m - bitsPerDigit; --result) {                if ((d & 0x8000) != 0) break;                d <<= 1;            }            return result;        };                RSAUtils.biMultiply = function(x, y) {            var result = new BigInt();            var c;            var n = RSAUtils.biHighIndex(x);            var t = RSAUtils.biHighIndex(y);            var u, uv, k;                    for (var i = 0; i <= t; ++i) {                c = 0;                k = i;                for (j = 0; j <= n; ++j, ++k) {                    uv = result.digits[k] + x.digits[j] * y.digits[i] + c;                    result.digits[k] = uv & maxDigitVal;                    c = uv >>> biRadixBits;                    //c = Math.floor(uv / biRadix);                }                result.digits[i + n + 1] = c;            }            // Someone give me a logical xor, please.            result.isNeg = x.isNeg != y.isNeg;            return result;        };                RSAUtils.biMultiplyDigit = function(x, y) {            var n, c, uv;                    result = new BigInt();            n = RSAUtils.biHighIndex(x);            c = 0;            for (var j = 0; j <= n; ++j) {                uv = result.digits[j] + x.digits[j] * y + c;                result.digits[j] = uv & maxDigitVal;                c = uv >>> biRadixBits;                //c = Math.floor(uv / biRadix);            }            result.digits[1 + n] = c;            return result;        };                RSAUtils.arrayCopy = function(src, srcStart, dest, destStart, n) {            var m = Math.min(srcStart + n, src.length);            for (var i = srcStart, j = destStart; i < m; ++i, ++j) {                dest[j] = src[i];            }        };                var highBitMasks = [0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,                0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,                0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF];                RSAUtils.biShiftLeft = function(x, n) {            var digitCount = Math.floor(n / bitsPerDigit);            var result = new BigInt();            RSAUtils.arrayCopy(x.digits, 0, result.digits, digitCount,                      result.digits.length - digitCount);            var bits = n % bitsPerDigit;            var rightBits = bitsPerDigit - bits;            for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {                result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |                                   ((result.digits[i1] & highBitMasks[bits]) >>>                                    (rightBits));            }            result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);            result.isNeg = x.isNeg;            return result;        };                var lowBitMasks = [0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,                0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,                0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF];                RSAUtils.biShiftRight = function(x, n) {            var digitCount = Math.floor(n / bitsPerDigit);            var result = new BigInt();            RSAUtils.arrayCopy(x.digits, digitCount, result.digits, 0,                      x.digits.length - digitCount);            var bits = n % bitsPerDigit;            var leftBits = bitsPerDigit - bits;            for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {                result.digits[i] = (result.digits[i] >>> bits) |                                   ((result.digits[i1] & lowBitMasks[bits]) << leftBits);            }            result.digits[result.digits.length - 1] >>>= bits;            result.isNeg = x.isNeg;            return result;        };                RSAUtils.biMultiplyByRadixPower = function(x, n) {            var result = new BigInt();            RSAUtils.arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);            return result;        };                RSAUtils.biDivideByRadixPower = function(x, n) {            var result = new BigInt();            RSAUtils.arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);            return result;        };                RSAUtils.biModuloByRadixPower = function(x, n) {            var result = new BigInt();            RSAUtils.arrayCopy(x.digits, 0, result.digits, 0, n);            return result;        };                RSAUtils.biCompare = function(x, y) {            if (x.isNeg != y.isNeg) {                return 1 - 2 * Number(x.isNeg);            }            for (var i = x.digits.length - 1; i >= 0; --i) {                if (x.digits[i] != y.digits[i]) {                    if (x.isNeg) {                        return 1 - 2 * Number(x.digits[i] > y.digits[i]);                    } else {                        return 1 - 2 * Number(x.digits[i] < y.digits[i]);                    }                }            }            return 0;        };                RSAUtils.biDivideModulo = function(x, y) {            var nb = RSAUtils.biNumBits(x);            var tb = RSAUtils.biNumBits(y);            var origYIsNeg = y.isNeg;            var q, r;            if (nb < tb) {                // |x| < |y|                if (x.isNeg) {                    q = RSAUtils.biCopy(bigOne);                    q.isNeg = !y.isNeg;                    x.isNeg = false;                    y.isNeg = false;                    r = biSubtract(y, x);                    // Restore signs, ‘cause they‘re references.                    x.isNeg = true;                    y.isNeg = origYIsNeg;                } else {                    q = new BigInt();                    r = RSAUtils.biCopy(x);                }                return [q, r];            }                    q = new BigInt();            r = x;                    // Normalize Y.            var t = Math.ceil(tb / bitsPerDigit) - 1;            var lambda = 0;            while (y.digits[t] < biHalfRadix) {                y = RSAUtils.biShiftLeft(y, 1);                ++lambda;                ++tb;                t = Math.ceil(tb / bitsPerDigit) - 1;            }            // Shift r over to keep the quotient constant. We‘ll shift the            // remainder back at the end.            r = RSAUtils.biShiftLeft(r, lambda);            nb += lambda; // Update the bit count for x.            var n = Math.ceil(nb / bitsPerDigit) - 1;                    var b = RSAUtils.biMultiplyByRadixPower(y, n - t);            while (RSAUtils.biCompare(r, b) != -1) {                ++q.digits[n - t];                r = RSAUtils.biSubtract(r, b);            }            for (var i = n; i > t; --i) {            var ri = (i >= r.digits.length) ? 0 : r.digits[i];            var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];            var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];            var yt = (t >= y.digits.length) ? 0 : y.digits[t];            var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];                if (ri == yt) {                    q.digits[i - t - 1] = maxDigitVal;                } else {                    q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);                }                        var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);                var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);                while (c1 > c2) {                    --q.digits[i - t - 1];                    c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);                    c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);                }                        b = RSAUtils.biMultiplyByRadixPower(y, i - t - 1);                r = RSAUtils.biSubtract(r, RSAUtils.biMultiplyDigit(b, q.digits[i - t - 1]));                if (r.isNeg) {                    r = RSAUtils.biAdd(r, b);                    --q.digits[i - t - 1];                }            }            r = RSAUtils.biShiftRight(r, lambda);            // Fiddle with the signs and stuff to make sure that 0 <= r < y.            q.isNeg = x.isNeg != origYIsNeg;            if (x.isNeg) {                if (origYIsNeg) {                    q = RSAUtils.biAdd(q, bigOne);                } else {                    q = RSAUtils.biSubtract(q, bigOne);                }                y = RSAUtils.biShiftRight(y, lambda);                r = RSAUtils.biSubtract(y, r);            }            // Check for the unbelievably stupid degenerate case of r == -0.            if (r.digits[0] == 0 && RSAUtils.biHighIndex(r) == 0) r.isNeg = false;                    return [q, r];        };                RSAUtils.biDivide = function(x, y) {            return RSAUtils.biDivideModulo(x, y)[0];        };                RSAUtils.biModulo = function(x, y) {            return RSAUtils.biDivideModulo(x, y)[1];        };                RSAUtils.biMultiplyMod = function(x, y, m) {            return RSAUtils.biModulo(RSAUtils.biMultiply(x, y), m);        };                RSAUtils.biPow = function(x, y) {            var result = bigOne;            var a = x;            while (true) {                if ((y & 1) != 0) result = RSAUtils.biMultiply(result, a);                y >>= 1;                if (y == 0) break;                a = RSAUtils.biMultiply(a, a);            }            return result;        };                RSAUtils.biPowMod = function(x, y, m) {            var result = bigOne;            var a = x;            var k = y;            while (true) {                if ((k.digits[0] & 1) != 0) result = RSAUtils.biMultiplyMod(result, a, m);                k = RSAUtils.biShiftRight(k, 1);                if (k.digits[0] == 0 && RSAUtils.biHighIndex(k) == 0) break;                a = RSAUtils.biMultiplyMod(a, a, m);            }            return result;        };                        $w.BarrettMu = function(m) {            this.modulus = RSAUtils.biCopy(m);            this.k = RSAUtils.biHighIndex(this.modulus) + 1;            var b2k = new BigInt();            b2k.digits[2 * this.k] = 1; // b2k = b^(2k)            this.mu = RSAUtils.biDivide(b2k, this.modulus);            this.bkplus1 = new BigInt();            this.bkplus1.digits[this.k + 1] = 1; // bkplus1 = b^(k+1)            this.modulo = BarrettMu_modulo;            this.multiplyMod = BarrettMu_multiplyMod;            this.powMod = BarrettMu_powMod;        };                function BarrettMu_modulo(x) {            var $dmath = RSAUtils;            var q1 = $dmath.biDivideByRadixPower(x, this.k - 1);            var q2 = $dmath.biMultiply(q1, this.mu);            var q3 = $dmath.biDivideByRadixPower(q2, this.k + 1);            var r1 = $dmath.biModuloByRadixPower(x, this.k + 1);            var r2term = $dmath.biMultiply(q3, this.modulus);            var r2 = $dmath.biModuloByRadixPower(r2term, this.k + 1);            var r = $dmath.biSubtract(r1, r2);            if (r.isNeg) {                r = $dmath.biAdd(r, this.bkplus1);            }            var rgtem = $dmath.biCompare(r, this.modulus) >= 0;            while (rgtem) {                r = $dmath.biSubtract(r, this.modulus);                rgtem = $dmath.biCompare(r, this.modulus) >= 0;            }            return r;        }                function BarrettMu_multiplyMod(x, y) {            /*            x = this.modulo(x);            y = this.modulo(y);            */            var xy = RSAUtils.biMultiply(x, y);            return this.modulo(xy);        }                function BarrettMu_powMod(x, y) {            var result = new BigInt();            result.digits[0] = 1;            var a = x;            var k = y;            while (true) {                if ((k.digits[0] & 1) != 0) result = this.multiplyMod(result, a);                k = RSAUtils.biShiftRight(k, 1);                if (k.digits[0] == 0 && RSAUtils.biHighIndex(k) == 0) break;                a = this.multiplyMod(a, a);            }            return result;        }                var RSAKeyPair = function(encryptionExponent, decryptionExponent, modulus) {            var $dmath = RSAUtils;            this.e = $dmath.biFromHex(encryptionExponent);            this.d = $dmath.biFromHex(decryptionExponent);            this.m = $dmath.biFromHex(modulus);            // We can do two bytes per digit, so            // chunkSize = 2 * (number of digits in modulus - 1).            // Since biHighIndex returns the high index, not the number of digits, 1 has            // already been subtracted.            this.chunkSize = 2 * $dmath.biHighIndex(this.m);            this.radix = 16;            this.barrett = new $w.BarrettMu(this.m);        };                RSAUtils.getKeyPair = function(encryptionExponent, decryptionExponent, modulus) {            return new RSAKeyPair(encryptionExponent, decryptionExponent, modulus);        };                if(typeof $w.twoDigit === ‘undefined‘) {            $w.twoDigit = function(n) {                return (n < 10 ? "0" : "") + String(n);            };        }                // Altered by Rob Saunders ([email protected]). New routine pads the        // string after it has been converted to an array. This fixes an        // incompatibility with Flash MX‘s ActionScript.        RSAUtils.encryptedString = function(key, s) {            var a = [];            var sl = s.length;            var i = 0;            while (i < sl) {                a[i] = s.charCodeAt(i);                i++;            }                    while (a.length % key.chunkSize != 0) {                a[i++] = 0;            }                    var al = a.length;            var result = "";            var j, k, block;            for (i = 0; i < al; i += key.chunkSize) {                block = new BigInt();                j = 0;                for (k = i; k < i + key.chunkSize; ++j) {                    block.digits[j] = a[k++];                    block.digits[j] += a[k++] << 8;                }                var crypt = key.barrett.powMod(block, key.e);                var text = key.radix == 16 ? RSAUtils.biToHex(crypt) : RSAUtils.biToString(crypt, key.radix);                result += text + " ";            }            return result.substring(0, result.length - 1); // Remove last space.        };                RSAUtils.decryptedString = function(key, s) {            var blocks = s.split(" ");            var result = "";            var i, j, block;            for (i = 0; i < blocks.length; ++i) {                var bi;                if (key.radix == 16) {                    bi = RSAUtils.biFromHex(blocks[i]);                }                else {                    bi = RSAUtils.biFromString(blocks[i], key.radix);                }                block = key.barrett.powMod(bi, key.d);                for (j = 0; j <= RSAUtils.biHighIndex(block); ++j) {                    result += String.fromCharCode(block.digits[j] & 255,                                                  block.digits[j] >> 8);                }            }            // Remove trailing null, if any.            if (result.charCodeAt(result.length - 1) == 0) {                result = result.substring(0, result.length - 1);            }            return result;        };                RSAUtils.setMaxDigits(130);                })(window);    </script></head><body>    <p id="user">Hello World!</p>    <p id="exponent">Hello World!</p>    <p id="modulus">Hello World!</p>    <p id="result">Hello World!</p>    <script>        function GetRequest(){             var url = location.search; //获取url中"?"符后的字串             var theRequest = new Object();             if (url.indexOf("?") != -1){                 var str = url.substr(1);                 strs = str.split("&");                 for(var i = 0; i < strs.length; i ++){                     theRequest[strs[i].split("=")[0]]=unescape(strs[i].split("=")[1]);                 }             }             return theRequest;         }         var Request = new Object();         Request = GetRequest();         var user;         user= Request[‘user‘];         document.getElementById("user").innerHTML = user;                function sleep(numberMillis) {        var now = new Date();        var exitTime = now.getTime() + numberMillis;        while (true) {            now = new Date();            if (now.getTime() > exitTime)                return;            }        }         var exponent = ‘010001‘        var modulus = ‘***********************************************‘        document.getElementById("exponent").innerHTML = exponent;        document.getElementById("modulus").innerHTML = modulus;         RSAPUB_KEY = RSAUtils.getKeyPair(exponent,‘‘,modulus);         enpassword = RSAUtils.encryptedString(RSAPUB_KEY,user);        document.getElementById("result").innerHTML = enpassword;        console.log(enpassword);    </script></body></html>""")                      #self.send_response(‘index.html‘);        #self.end_headers();        return         if __name__ == "__main__":    server = HTTPServer((‘127.0.0.1‘, 9999), RequestHandler);    print "Starting server, use <Ctrl-C> to stop";    server.serve_forever();

  客户端发送get请求,把待加密信息作为参数传过来,python的webserver实现加密,并传回结果。

(ps. js代码本来想通过文件路径的方式调用,但是调试时出现报错,于是直接将代码拷到head里面了。直接调js文件路径的方式,不知道是否可行,待研究。。。)

但是这种方法,要保证server一直运行,实际使用中比较麻烦。

2 使用python的rsa第三方库实现rsa加密:

python能做rsa加密的库从网上搜到三种:PyCrypto,rsa,M2Crypto

因为我们从网站响应中只能拿到e和n两个值,需要通过(e,n)获取公钥。

发现PyCrypto和rsa有这种功能,M2Crypto 没有找到,加上M2Crypto 安装比较麻烦,就没有试。

使用使用PyCrypto加密:

import Crypto.PublicKey.RSAfrom Crypto.PublicKey import RSA#from Crypto.Cipher import PKCS1_OAEPfrom Crypto.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5from Crypto.Signature import PKCS1_v1_5 as Signature_pkcs1_v1_5from Crypto.Hash import SHAimport binasciidef rsaEncrypt1(str):    timespan = 1411093327735 - int(time.time())*1000;    rsakey = Crypto.PublicKey.RSA.construct((long(n,16),long(e,16))) #根据e,n生成publicKey    public_key = rsakey.publickey().exportKey()    with open(‘master-public.pem‘, ‘w‘) as f:        f.write(public_key)    with open(‘master-public.pem‘) as f:        key = f.read()        rsakey = RSA.importKey(key)        cipher = Cipher_pkcs1_v1_5.new(rsakey)        crypto = cipher.encrypt(str)        en= binascii.b2a_hex(crypto)        print en        return enrsaEncrypt1(‘12345678‘)

 这种加密方式使用的padding方式(填充方式)是pkcs1_v1_5,同一字符串每次加密结果不一样,与js实现结果不符。

pyCrypto还支持一种填充方式,PKCS1_OAEP,试了下,也是同一字符串每次加密结果不一样

使用rsa库加密:

import rsadef useRsaEn(str):    rsaPublickey = long(n, 16)   #n为modulus    key = rsa.PublicKey(rsaPublickey, 65537)  #65537 为e,一般等于010001        passwd = rsa.encrypt(str, key)     passwd = binascii.b2a_hex(passwd)    print passwd    return passwduseRsaEn(‘12345566‘)

 这种加密出来的结果也是相同字符串,结果不一样,猜测是用的pkcs1的填充方式。

相同字符串每次加密结果不一样,看网上的解释是填充方式采用的随机方式,如果结果每次一样,应该是使用的no padding模式。

至于js中相同字符串每次结果一样,应该使用的是no padding填充方式,手动在末尾做填充,而不是随机填充。

找了这两个库的文档,发现没有使用无填充加密的方法。

因此使用现成rsa库加密的方式行不通!

该不会只能读懂js代码再用python实现吧~~最后灵机一动,试试用python直接调用js代码是否可行。

3 python调用js函数实现rsa加密

python调用js的库真的有几个,选了个用的人比较多,安装不那么费劲的PyV8。windows直接下exe安装程序即可。

import PyV8def usePyV8(message):    ctxt = PyV8.JSContext()    ctxt.__enter__()    js_file = open(‘security.js‘)  #security.js在当前目录下    js_data = js_file.read()    js_file.close()    ctxt.eval(js_data)       rsaEn = ctxt.locals.rsaEn  #rsaEn 为security.js中的function    ret=rsaEn(message)    #message为rsaEn函数的入参    print retusePyV8(‘12345678‘)

  经实验,发现确实可行!就是js代码需要稍做修改,比如:(function($w) { })(window); 这种貌似不能识别,我把$w 这种都直接删掉了。

收获:

1、熟悉了rsa加密算法原理

2、熟悉了python webserver的实现

3、熟悉了python rsa库的使用方法

4、熟悉了python调用js的方法

5、熟悉了chrome调试js的方法,对js语法理解更深入

最后还解决了问题,完美!

python实现网页登录时的rsa加密流程

评论关闭