Logistic回归模型和Python实现,,回归分析是研究变量之


回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用。

Logistic回归模型

线性回归

先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域。

模型数学形式:

技术分享

引入损失函数(loss function,也称为错误函数)描述模型拟合程度:

技术分享

使J(w)最小,求解优化问题得到最佳参数。

Logistic回归

logistic回归(Logistic regression 或 logit regression)有时也被译为"逻辑回归",不过它和"逻辑"并没有太大关系应该只是音译。从内容来讲,它最合适的名字应该是logit回归。

logistic回归模型更多的被用于概率分类器中。线性回归将自变量映射到连续的实数,在很多情况下因变量的取值是在有限的区间中的,最常见的如概率问题的0-1区间。

Sigmod函数提供了一个从实数域到(0,1)的映射:

技术分享

该函数如图:

技术分享

以数学形式给出把线性模型映射到0-1的方式:

技术分享

逆变换:

技术分享

这个变换被称为logit变换,或许就是该模型名字的来源。

logistic回归通常被用做概率分类器,以p=0.5作为分解线。

求解规划模型

最小二乘法

最小二乘法通过数学推导得到全局最优解的表达式,是一种完全数学描述的方法,直接给出求解公式。

最小二乘法可以得到全局最优解,但是因涉及超大矩阵的求逆运算而难以求解。

技术分享

梯度下降(上升)法:

梯度下降法是一种典型的贪心算法,它从任意一组参数开始,向着使目标函数最小的方向调整参数,直至无法使目标函数继续下降时,停止计算。

多元函数微积分中, 梯度指向函数值变化最快方向的向量. 梯度下降法无法保证的得到全局最优解

梯度下降法有批量梯度下降法和随机梯度下降法两种实现方法。

批量梯度下降(上升)法(Batch Gradient Descent/Ascent)

批量梯度下降法的算法流程:

初始化回归系数为1重复执行直至收敛 {    计算整个数据集的梯度    按照递推公式更新回归梯度}返回最优回归系数值

将损失函数J(w)求偏导,得到J(w)的梯度。以矩阵形式给出:

技术分享

alpha是下降步长,由迭代公式:

技术分享

随机梯度下降(上升)法(stochastic gradient Descent/Ascent)

随机梯度下降法的算法流程:

初始化回归系数为1重复执行直至收敛 {    对每一个训练样本{        计算样本的梯度        按照递推公式更新回归梯度    }}返回最优回归系数值

为了加快收敛速度,做出两个改进:

(1)在每次迭代时,调整更新步长alpha的值。随着迭代的进行,alpha越来越小

(2)每次迭代改变样本的顺序,也就是随机选择样本来更新回归系数

Logistic 回归的实现

训练数据testSet.txt,包含m行n+1列:

m行代表m条数据,每条数据前n列代表n个样本,第n+1列代表分类标签(0或1)。

Python:

分类器被封装在类中:

from numpy import *import matplotlib.pyplot as pltdef sigmoid(X):       return 1.0/(1+exp(-X))class logRegressClassifier(object):        def __init__(self):        self.dataMat = list()        self.labelMat = list()        self.weights = list()    def loadDataSet(self, filename):        fr = open(filename)        for line in fr.readlines():            lineArr = line.strip().split()            dataLine = [1.0]            for i in lineArr:                dataLine.append(float(i))            label = dataLine.pop() # pop the last column referring to  label            self.dataMat.append(dataLine)            self.labelMat.append(int(label))        self.dataMat = mat(self.dataMat)        self.labelMat = mat(self.labelMat).transpose()        def train(self):        self.weights = self.stocGradAscent1()    def batchGradAscent(self):        m,n = shape(self.dataMat)        alpha = 0.001        maxCycles = 500        weights = ones((n,1))        for k in range(maxCycles):              #heavy on matrix operations            h = sigmoid(self.dataMat * weights)     #matrix mult            error = (self.labelMat - h)              #vector subtraction            weights += alpha * self.dataMat.transpose() * error #matrix mult        return weights    def stocGradAscent1(self):        m,n = shape(self.dataMat)        alpha = 0.01        weights = ones((n,1))   #initialize to all ones        for i in range(m):            h = sigmoid(sum(self.dataMat[i] * weights))            error = self.labelMat[i] - h            weights += (alpha * error * self.dataMat[i]).transpose()        return weights    def stocGradAscent2(self):         numIter = 2        m,n = shape(self.dataMat)        weights = ones((n,1))   #initialize to all ones        for j in range(numIter):            dataIndex = range(m)            for i in range(m):                alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not                 randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant                h = sigmoid( sum(self.dataMat[randIndex] * weights) )                error = self.labelMat[randIndex] - h                weights += (alpha * error * self.dataMat[randIndex]).transpose()                del(dataIndex[randIndex])        return weights    def classify(self, X):        prob = sigmoid(sum( X * self.weights))        if prob > 0.5:            return 1.0        else:             return 0.0    def test(self):        self.loadDataSet(‘testData.dat‘)        weights0 = self.batchGradAscent()        weights1 = self.stocGradAscent1()        weights2 = self.stocGradAscent2()        print(‘batchGradAscent:‘, weights0)        print(‘stocGradAscent0:‘, weights1)        print(‘stocGradAscent1:‘, weights2)if __name__ == ‘__main__‘:    lr = logRegressClassifier()    lr.test()

Matlab

上述Python代码用Matlab实现并不难(只是需要拆掉类封装),只是Matlab的广义线性模型工具箱提供了Logistic模型的实现。

trainData = [0 1; -1 0; 2 2; 3 3; -2 -1;-4.5 -4; 2 -1; -1 -3];group = [1 1 0 0 1 1 0 0]‘;testData = [5 2;3 1;-4 -3];[testNum, attrNum] = size(testData);testData2 = [ones(testNum,1), testData];B = glmfit(trainData, [group ones(size(group))],‘binomial‘, ‘link‘, ‘logit‘)p = 1.0 ./ (1 + exp(- testData2 * B))

B = glmfit(X, [Y N],‘binomial‘, ‘link‘, ‘logit‘)

X参数为特征行向量组, Y为代表预先分组的列向量,N是一个与Y同型的向量,Y(i)的在[0 N(i)]范围内取值。

B为[1, x1, x2,...]的系数,测试数据的第一列被加上了1。

p = 1.0 ./ (1 + exp(- testData2 * B))

代入sigmoid函数求解。

Logistic回归模型和Python实现

评论关闭