Python多进程处理:如何将大量数据放入有限内存,python放入,未经许可,禁止转载!英文


本文由 编橙之家 - Daetalus 翻译,黄利民 校稿。未经许可,禁止转载!
英文出处:James。欢迎加入翻译组。

简介

这是一篇有关如何将大量的数据放入有限的内存中的简略教程。

与客户工作时,有时会发现他们的数据库实际上只是一个csv或Excel文件仓库,你只能将就着用,经常需要在不更新他们的数据仓库的情况下完成工作。大部分情况下,如果将这些文件存储在一个简单的数据库框架中或许更好,但时间可能不允许。这种方法对时间、机器硬件和所处环境都有要求。

下面介绍一个很好的例子:假设有一堆表格(没有使用Neo4j、MongoDB或其他类型的数据库,仅仅使用csvs、tsvs等格式存储的表格),如果将所有表格组合在一起,得到的数据帧太大,无法放入内存。所以第一个想法是:将其拆分成不同的部分,逐个存储。这个方案看起来不错,但处理起来很慢。除非我们使用多核处理器。

目标

这里的目标是从所有职位中(大约1万个),找出相关的的职位。将这些职位与政府给的职位代码组合起来。接着将组合的结果与对应的州(行政单位)信息组合起来。然后用通过word2vec生成的属性信息在我们的客户的管道中增强已有的属性。

这个任务要求在短时间内完成,谁也不愿意等待。想象一下,这就像在不使用标准的关系型数据库的情况下进行多个表的连接。

数据

职位数据

referencenumber title postdate url company city state description
1652398203 Sales Associate 2014-07-09 13:47:18 URL link Company Name City State Our Sales Associates are…

“表格太长,请到原文查看。”

标题数据

ID Title
82 Pediatricians, General

OES数据

area area_title area_type naics naics_title own_code 后略…
99 U.S. 1 000000 Cross-industry 1235 00-0000

“表格太长,请到原文查看。”

SOC表

2010 SOC Code 2010 SOC Title 2010 SOC Direct Match Title llustrative Example
11-1011 Chief Executives CEO

示例脚本

下面的是一个示例脚本,展示了如何使用multiprocessing来在有限的内存空间中加速操作过程。脚本的第一部分是和特定任务相关的,可以自由跳过。请着重关注第二部分,这里侧重的是multiprocessing引擎。

Python
#import the necessary packages
import pandas as pd
import us
import numpy as np
from multiprocessing import Pool,cpu_count,Queue,Manager

# the data in one particular column was number in the form that horrible excel version 
# of a number where '12000' is '12,000' with that beautiful useless comma in there. 
# did I mention I excel bothers me?
# instead of converting the number right away, we only convert them when we need to
def median_maker(column):
    return np.median([int(x.replace(',','')) for x in column])

# dictionary_of_dataframes contains a dataframe with information for each title; e.g title is 'Data Scientist'
# related_title_score_df is the dataframe of information for the title; columns = ['title','score'] 
### where title is a similar_title and score is how closely the two are related, e.g. 'Data Analyst', 0.871
# code_title_df contains columns ['code','title']
# oes_data_df is a HUGE dataframe with all of the Bureau of Labor Statistics(BLS) data for a given time period (YAY FREE DATA, BOO BAD CENSUS DATA!)

def job_title_location_matcher(title,location):
    try:
        related_title_score_df = dictionary_of_dataframes[title]
        # we limit dataframe1 to only those related_titles that are above 
        # a previously established threshold
        related_title_score_df = related_title_score_df[title_score_df['score']>80]

        #we merge the related titles with another table and its codes
        codes_relTitles_scores = pd.merge(code_title_df,related_title_score_df)
        codes_relTitles_scores = codes_relTitles_scores.drop_duplicates()

        # merge the two dataframes by the codes
        merged_df = pd.merge(codes_relTitles_scores, oes_data_df)
        #limit the BLS data to the state we want
        all_merged = merged_df[merged_df['area_title']==str(us.states.lookup(location).name)]

        #calculate some summary statistics for the time we want
        group_med_emp,group_mean,group_pct10,group_pct25,group_median,group_pct75,group_pct90 = all_merged[['tot_emp','a_mean','a_pct10','a_pct25','a_median','a_pct75','a_pct90']].apply(median_maker)
        row = [title,location,group_med_emp,group_mean,group_pct10,group_pct25, group_median, group_pct75, group_pct90]
        #convert it all to strings so we can combine them all when writing to file
        row_string = [str(x) for x in row]
        return row_string
    except:
        # if it doesnt work for a particular title/state just throw it out, there are enough to make this insignificant
        'do nothing'

这里发生了神奇的事情:

Python
#runs the function and puts the answers in the queue
def worker(row, q):
        ans = job_title_location_matcher(row[0],row[1])
        q.put(ans)

# this writes to the file while there are still things that could be in the queue
# this allows for multiple processes to write to the same file without blocking eachother
def listener(q):
    f = open(filename,'wb')
    while 1:
        m = q.get()
        if m =='kill':
                break
        f.write(','.join(m) + 'n')
        f.flush()
    f.close()

def main():
    #load all your data, then throw out all unnecessary tables/columns
    filename = 'skill_TEST_POOL.txt'

    #sets up the necessary multiprocessing tasks 
    manager = Manager()
    q = manager.Queue()
    pool = Pool(cpu_count() + 2)
    watcher = pool.map_async(listener,(q,))

    jobs = []
    #titles_states is a dataframe of millions of job titles and states they were found in
    for i in titles_states.iloc:
        job = pool.map_async(worker, (i, q))
        jobs.append(job)

    for job in jobs:
        job.get()
    q.put('kill')
    pool.close()
    pool.join()

if __name__ == "__main__":
    main()

由于每个数据帧的大小都不同(总共约100Gb),所以将所有数据都放入内存是不可能的。通过将最终的数据帧逐行写入内存,但从来不在内存中存储完整的数据帧。我们可以完成所有的计算和组合任务。这里的“标准方法”是,我们可以仅仅在“job_title_location_matcher”的末尾编写一个“write_line”方法,但这样每次只会处理一个实例。根据我们需要处理的职位/州的数量,这大概需要2天的时间。而通过multiprocessing,只需2个小时。

虽然读者可能接触不到本教程处理的任务环境,但通过multiprocessing,可以突破许多计算机硬件的限制。本例的工作环境是c3.8xl ubuntu ec2,硬件为32核60Gb内存(虽然这个内存很大,但还是无法一次性放入所有数据)。这里的关键之处是我们在60Gb的内存的机器上有效的处理了约100Gb的数据,同时速度提升了约25倍。通过multiprocessing在多核机器上自动处理大规模的进程,可以有效提高机器的利用率。也许有些读者已经知道了这个方法,但对于其他人,可以通过multiprocessing能带来非常大的收益。顺便说一句,这部分是skill assets in the job-market这篇博文的延续。

打赏支持我翻译更多好文章,谢谢!

打赏译者

打赏支持我翻译更多好文章,谢谢!

任选一种支付方式

评论关闭